Q.27 The entropy of any system is given by

 $S=lpha^2eta\ln\!\left[rac{\mu kR}{Jeta^2}+3
ight]$ where lpha and eta are the constants. μ , J, k and R are no. of moles, mechanical equivalent of heat, Boltzmann constant and gas constant respectively.

[Take $S=rac{dQ}{T}$]

Choose the incorrect option from the following:

- $oldsymbol{\Delta}$ lpha and J have the same dimensions.
- $oxed{\mathbb{B}}$ S and lpha have different dimensions
- \bigcirc S, β , k and μ R have the same dimensions
- $oxdot{0}$ lpha and k have the same dimensions

20th July Morning Shift 2021

Ans. D

Ans 27. Since, entropy of the system is given by

$$S = \alpha^2 \beta \ln \left[rac{\mu k R}{J eta^2} + 3
ight] \dots$$
 (i)

As,
$$S=rac{Q}{\Delta T}$$
 [given]

$$\Rightarrow [S] = \frac{|ML^2T^{-2}|}{|K|} \dots (\mathrm{II})$$

: Dimensions of Q = [ML2T-2]

Dimension of T = [K]

Bottzmann constant, $k=\frac{energy}{T}$ [:: Dimensions of energy = [ML 2 T $^{-2}$]]

$$\Rightarrow [k] = \frac{|ML^3T^{-3}|}{|K|} \dots...(iii)$$

From Eqs. (ii) and (iii), we can write,

$$[S] = [k] = \frac{|\mathit{ML}^{2}T^{-2}|}{|K|} \ldots \ldots (\mathsf{IV})$$

: Gas constant,
$$|R| = \frac{|R \log n|}{|nT|} = \frac{|ML^{\dagger}T^{-3}|}{|md|K|} \ldots (\mathbf{V})$$

and mechanical equivalent of heat

$$[J] = [M^0 L^0 T^0]$$
 (vi)

As,
$$[\mu kR] = [J\beta]^2$$

Using Eqs. (iii), (v) and (vi), we get

$$\Rightarrow [mol] \times \tfrac{[ML^2T^{-2}]}{[K]} \times \tfrac{[ML^2T^{-2}]}{[mol\ K]} = [\beta^2]$$

$$\Rightarrow [\beta] = [ML^3T^{-2}K^{-1}] \hdots (vii)$$

Using Eq. (i), we can write,

$$|\alpha^2| = \frac{|s|}{|s|} = \frac{|ML^2T^{-2}K^{-1}|}{|ML^2T^{-2}K^{-1}|} \Rightarrow \alpha = [M^0L^0T^0] \dots (\mathrm{Vii})$$

So, from Eqs. (iii) and (viii), we can say that α and k have different dimensions.